May 19, 2024
Bagher Eftekhari-Sis

Bagher Eftekhari-Sis

Academic rank: Professor
Address: Department of Chemistry, University of Maragheh, P.O.Box 55181-83111, Maragheh, Iran
Education: PhD. in Organic Chemistry
Phone: +984137278900-Int.512
Faculty: Faculty of Basic Sciences

Research

Title
Synthesis and Application of Silver and Cobalt Nanoparticles Immobilized on Ionic Liquid-Functionalized Halloysite Nanotubes in the Reduction of 4-Nitrophenol in Aqueous Solution
Type Article
Keywords
4-nitrophenol reductionhalloysite nanotubesionic liquidsAg nanoparticlesCo nanoparticles
Year
2021
Journal NANO
DOI 10.1142/S1793292021500892
Researchers Khadijeh Yavari، Bagher Eftekhari-Sis، Ali Akbari

Abstract

4-nitrophenol (4-NP) is a highly toxic pollutant for aquatic ecosystem and human life. Therefore, the catalytic reduction of 4-NP into useful 4-aminophenol (4-AP) is of interest. In this regard, two heterogeneous nanocatalysts, including Ag@HNTs-ILs and Co@HNTs-ILs were prepared by grafting imidazolium-based ionic liquids (ILs) onto the halloysite nanotubes (HNTs), followed by immobilization of Ag and Co nanoparticles (NPs), and characterized by means of FT-IR, SEM, EDX, TEM and XRD. The catalytic activity of the prepared nanocatalysts was evaluated for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) under environmentally friendly condition. A set of time, temperature, nanocatalyst amount and NaBH4/4-NP molar ratios was screened. The reusability experiments demonstrated that Ag@HNTs-ILs and Co@HNTs-ILs were highly reusable, up to five reduction cycles without considerable changes in the reaction time. As the synthesized hybrid nanocatalysts could be re-collected and reused for various catalytic runs without any significant loss in their catalytic activity, they could be considered very promising nanomaterials from sustainability point of view.