The acid gases (H2S and CO2) are unpleasant groups in the natural gas (sour gas) stream, which must be reduced. The presence of acid gases will have operational problems such as corrosion in the processing facilities and, environmental issues like air pollution and greenhouse effects. Therefore, the reduction of acid gases from sour gas is essential via a reliable process. The most common method for natural gas sweetening is the utilization of the amine solution. In the current work, the analytic hierarchy process (AHP) is employed to consider the advantages and disadvantages of each amine solution. The four process criteria and seven alternatives were intended based on the AHP procedure. Then, the natural gas sweetening process was simulated, and finally, operation conditions were optimized. MDEA as an alternative and cost as process criteria were introduced with 21% and 53% as the highest priority, respectively. The reduction of acid gas contents and reboiler duty were chosen as objective functions. The optimization results indicated that the best feed gas temperature and MDEA concentration is 30 ºC and 39 wt.%, respectively. The amount of H2S and CO2 as one of the optimization objectives of gas sweetening achieved 2.4 and 88 ppm in the optimal condition. Accordingly, the MDEA solution consumption was reduced by 5%, and reboiler duty decreased approximately 0.04% compared to the conventional process.