1403/10/26
علی شکری

علی شکری

مرتبه علمی: استاد
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده علوم پایه
نشانی:
تلفن:

مشخصات پژوهش

عنوان
The new class of multistep multiderivative hybrid methods for the numerical solution of chemical stiff systems of first order IVPs
نوع پژوهش
JournalPaper
کلیدواژه‌ها
Stiff IVPs Chemical reactions · Off-step points · A(a)-stability · Multiderivative methods
سال
2020
مجله JOURNAL OF MATHEMATICAL CHEMISTRY
شناسه DOI
پژوهشگران Mohammad Mehdizadeh ، Ali Shokri Shokri ،

چکیده

In this paper, we present a general form of Nth derivative multistep methods. In these hybrid multistep multiderivative methods, additional stage points (or of-step points) have been used in the first derivative of the solution to improve the absolute stability regions. The accuracy and stability properties of these methods are investigated. We apply the new methods for the numerical integration of some famous stiff chemical problems such as Belousov–Zhabotinskii reaction, the Chapman atmosphere, chemical Akzo-Nobel problem, ROBER problem (suggested by Robertson) and some others which are widely used in numerical studies.