1403/10/26
علی شکری

علی شکری

مرتبه علمی: استاد
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده علوم پایه
نشانی:
تلفن:

مشخصات پژوهش

عنوان
A Singularly P-Stable Multi-Derivative Predictor Method for the Numerical Solution of Second-Order Ordinary Differential Equations
نوع پژوهش
JournalPaper
کلیدواژه‌ها
singularly P-stable; multiderivative methods; linear multistep methods; symmetric methods
سال
2021
مجله Mathematics
شناسه DOI
پژوهشگران Ali Shokri Shokri ، Beny Neta ، Mohammad Mehdizadeh ، Mohammad Mehdi Rashidi ، Hamid Mohammad Sedighi

چکیده

In this paper, a symmetric eight-step predictor method (explicit) of 10th order is presented for the numerical integration of IVPs of second-order ordinary differential equations. This scheme has variable coefficients and can be used as a predictor stage for other implicit schemes. First, we showed the singular P-stability property of the new method, both algebraically and by plotting the stability region. Then, having applied it to well-known problems like Mathieu equation, we showed the advantage of the proposed method in terms of efficiency and consistency over other methods with the same order.