1403/10/26
ابوالفضل تاری زاده

ابوالفضل تاری زاده

مرتبه علمی: دانشیار
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده علوم پایه
نشانی:
تلفن:

مشخصات پژوهش

عنوان
Structure theory of p.p. rings and their generalizations
نوع پژوهش
JournalPaper
کلیدواژه‌ها
p.p. ring · Generalized p.p. ring · p.f. ring · Generalized p.f. ring · Quasi p.f. ring
سال
2021
مجله Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-Matematicas
شناسه DOI
پژوهشگران Abolfazl Tarizadeh

چکیده

In this paper, new advances on the understanding the structure of p.p. rings and their generalizations have been made. Especially among them, it is proved that a commutative ring $R$ is a generalized p.p. ring if and only if $R$ is a generalized p.f. ring and its minimal spectrum is Zariski compact, or equivalently, $R/\mathfrak{N}$ is a p.p. ring and $R_{\mathfrak{m}}$ is a primary ring for all $\mathfrak{m}\in\Max(R)$. Some of the major results of the literature either are improved or are proven by new methods. In particular, we give a new and quite elementary proof to the fact that a commutative ring $R$ is a p.p. ring if and only if $R[x]$ is a p.p. ring.