1403/10/26
فیروز پاشایی

فیروز پاشایی

مرتبه علمی: دانشیار
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده علوم پایه
نشانی:
تلفن:

مشخصات پژوهش

عنوان
On some Lr-biharmonic Euclidean hypersurfaces
نوع پژوهش
JournalPaper
کلیدواژه‌ها
Linearized operator Lr, Lr-biharmonic hypersurfaces, Lr-finite type hypersurfaces, r-minimal
سال
2016
مجله Journal of Mathematics and Applications
شناسه DOI
پژوهشگران Akram Mohammadpouri ، Firooz Pashaie

چکیده

Abstract: In decade eighty, Bang-Yen Chen introduced the concept of biharmonic hypersurface in the Euclidean space. An isometrically im- mersed hypersurface x : Mn ! En+1 is said to be biharmonic if 2x = 0, where  is the Laplace operator. We study the Lr-biharmonic hypersur- faces as a generalization of biharmonic ones, where Lr is the linearized operator of the (r + 1)th mean curvature of the hypersurface and in spe- cial case we have L0 = . We prove that Lr-biharmonic hypersurface of Lr- nite type and also Lr-biharmonic hypersurface with at most two distinct principal curvatures in Euclidean spaces are r-minimal.