1403/10/26
فیروز پاشایی

فیروز پاشایی

مرتبه علمی: دانشیار
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده علوم پایه
نشانی:
تلفن:

مشخصات پژوهش

عنوان
L1-Biharmonic Hypersurfaces in Euclidean Spaces with Three Distinct Principal Curvatures
نوع پژوهش
JournalPaper
کلیدواژه‌ها
Linearized operators L1, L1-Biharmonic hypersurfaces, 1-Minimal
سال
2018
مجله Iranian Journal of Mathematical Sciences and Informatics
شناسه DOI
پژوهشگران Akram Mohammadpouri ، Firooz Pashaie ، ُSepideh Tajbakhsh

چکیده

A submanifold Mn of the Euclidean space En+m is said to be biharmonic if its position map x : M^n → E^{n+m} satisfies the condition ∆^2 x = 0, where ∆ stands for the Laplace operator. A well-known conjecture of Bang-Yen Chen says that, the only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider a modified version of the conjecture, replacing ∆ by its extension, L_1-operator (namely, L_1-conjecture). The L_1-conjecture states that any L_1-biharmonic Euclidean hypersurface is 1-minimal. We prove that the L1-conjecture is true for L_1-biharmonic hypersurfaces with three distinct principal curvatures and constant mean curvature of a Euclidean space of arbitrary dimension.