In this manuscript, the hypersurfaces of non-flat Riemannian 4-space forms are considered. A hypersurface of a 4-dimensional Riemannian space form defined by an isometric immersion x : M^3 → M^4(c) is said to be biconservative if it satisfies the equation (∆2x)⊤ = 0, where ∆ is the Laplace operator on M3 and ⊤ stands for the tangent component of vectors. We study an extended version of biconservativity condition on the hypersurfaces of the Riemannian standard 4-space forms. The C-biconservativity condition is obtained by substituting the Cheng-Yau operator C instead of ∆. We prove that C-biconservative hypersurfaces of Riemannian 4-space forms (with some additional conditions) have constant scalar curvature.