Intra-body flow-guided nanonetworks are nanonetworks that aim to deploy the Internet of Nanothings (IoNT) into the human cardiovascular system. In these nanonetworks, nano-nodes flow in blood vessels (including arteries and veins) for detecting sensitive biological/physical data. Nano-nodes dispatch data to each other and outside devices via Terahertz (THz) waves. Monitoring of different biomarkers, detection of infectious agents, localization of cancer cells, accurate drug delivery, and other medical applications are all potential applications utilizing such networks. However, the physical limitations of the nano-nodes and the high attenuation of terahertz waves in the blood limit data transmission. Therefore, based on the characteristic of laminar blood flow in blood vessels, we proposed a central high-speed lane routing protocol in Yao et al. (2023), which utilized high-speed nano-nodes in the central layer of the blood flow to form a directional relay chain for other non-centric nano-nodes. In this paper, the proposed protocol is studied in depth, described in detail, and evaluated in the parameters of the hand vein scenario. The proposed protocol works well in new scenarios and proves its efficiency in intra-body communication.