2025 : 1 : 9
Mohsen Javaherian

Mohsen Javaherian

Academic rank: Assistant Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: Research Institute for Astronomy and Astrophysics
Address:
Phone:

Research

Title
Extraction of Active Regions and Coronal Holes from EUV Images Using the Unsupervised Segmentation Method in the Bayesian Framework
Type
JournalPaper
Keywords
Sun: corona, Sun: activity, Sun: EUV radiation, Techniques: image processing
Year
2016
Journal SOLAR PHYSICS
DOI
Researchers Saeid Arish ، Mohsen Javaherian ، Hossein Safari ، Ali Amiri

Abstract

The solar corona is the origin of very dynamic events that are mostly produced in active regions (AR) and coronal holes (CH). The exact location of these large-scale features can be determined by applying image-processing approaches to extreme-ultraviolet (EUV) data. We here investigate the problem of segmentation of solar EUV images into ARs, CHs, and quiet-Sun (QS) images in a firm Bayesian way. On the basis of Bayes’ rule, we need to obtain both prior and likelihood models. To find the prior model of an image, we used a Potts model in non-local mode. To construct the likelihood model, we combined a mixture of a Markov–Gauss model and non-local means. After estimating labels and hyperparameters with the Gibbs estimator, cellular learning automata were employed to determine the label of each pixel. We applied the proposed method to a Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) dataset recorded during 2011 and found that the mean value of the filling factor of ARs is 0.032 and 0.057 for CHs. The power-law exponents of the size distribution of ARs and CHs were obtained to be −1.597 and −1.508, respectively, with the maximum likelihood estimator method. When we compare the filling factors of our method with a manual selection approach and the SPoCA algorithm, they are highly compatible.