In this paper, we present a general form of Nth derivative multistep methods. In these hybrid multistep multiderivative methods, additional stage points (or of-step points) have been used in the first derivative of the solution to improve the absolute stability regions. The accuracy and stability properties of these methods are investigated. We apply the new methods for the numerical integration of some famous stiff chemical problems such as Belousov–Zhabotinskii reaction, the Chapman atmosphere, chemical Akzo-Nobel problem, ROBER problem (suggested by Robertson) and some others which are widely used in numerical studies.