Highly meso-porous Pt contained γ-Al2O3 nanostructure was prepared by a combined sol gel-pyrolysis method in the presence of polyvinylpyrrolidone and Pluronic p123 as surfactant. The surface of the prepared nanostructure was decorated with 1-Butyl-3-methylimidazolium hexafluorophosphate ([BMM]PF6) ionic liquid to enhance the sorption capacity and prevent the poisoning of the catalytic active sites. The catalyst was characterized by X-ray diffraction powder (XRD), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX), and Brunauer–Emmett–Teller surface analysis (BET) methods. The XRD pattern and the results of elemental analysis well confirmed the crystalline phase of gamma-alumina and the presence of Pt nanoparticles on the surface. Decolorization of Anazolene Sodium (AS) dye compound as a typical wastewater was carried out using H2O2 as oxidative agent and the results showed that the prepared nanostructure had promising catalytic activity. The results of the recycling experiments showed that [BMIM]PF6/Pt/γ-Al2O3 is more promising than Pt/γ-Al2O3 which points out the role of ionic liquid layer on the surface