29 اردیبهشت 1403
محمد رضا اكبرپور آرباطان

محمد رضا اکبرپور آرباطان

مرتبه علمی: استاد
نشانی: دانشگاه مراغه
تحصیلات: دکترای تخصصی / مهندسی مواد و متالوژی
تلفن:
دانشکده: دانشکده فنی و مهندسی

مشخصات پژوهش

عنوان
Fabrication of NiTi and NiTi-nano Al2O3 composites by powder metallurgy methods: Comparison of hot isostatic pressing and spark plasma sintering techniques
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
NiTi Nano alumina Spark plasma sintering (SPS) Hot isostatic pressing (HIP) Microstructure Martensitic transformation
سال
2018
مجله CERAMICS INTERNATIONAL
شناسه DOI https://doi.org/10.1016/j.ceramint.2018.06.025
پژوهشگران محمد فرویزی ، م کهخائی ، محمد رضا اکبرپور آرباطان ، H.S. Kim

چکیده

To escape the detrimental effect of NiTi matrix decomposition on hot-isostatic-pressing (HIP)-processed NiTinano alumina composites, which leads to the formation of NiTi2/Ni3Ti intermetallics; in this study, spark plasma sintering (SPS) was utilized to restrict this phenomenon in NiTi and NiTi-6 wt% nano alumina composites. After optimization of the SPS processing conditions, the microstructural aspects of the SPS and HIP-consolidated samples were compared. According to X-ray diffraction analysis, the SPS-processed composites contained more B2-NiTi phase than the HIP-processed samples did. This is because of lower NiTi matrix decomposition due to formation of NiTi2/Ni3Ti phases. Scanning electron microscopy studies revealed that at the interface of alumina and the NiTi matrix, Ti-rich phases had evolved, while in the grain interiors, matrix decomposition mostly led to the formation of Ni-rich intermetallics. High-resolution transmission electron microscopy investigations confirmed an increased Ni/Ti ratio in the austenitic NiTi matrix in the vicinity of the Ti-rich phases, and the formation of martensitic NiTi near the Ni-rich phases. The results from differential scanning calorimetry indicated that the latent heat of martensitic transformation in the SPS composite is higher than that of HIP-processed composite samples due to lower matrix decomposition and higher NiTi phase, which can participate in martensitic transformation.