A numerical simulation is performed to characterize the power conversion efficiency of a PbS Quantum Dot sensitized solar cell and a solar cell containing of type-II semiconductor core shell layer. Simulation results showed much higher efficiency for a core-shell solar cell as compared to PbS QD sensitized solar cells, reaching an overall efficiency of 3.5% under simulated solar illumination (AM1.5, 100 mW·cm−2). In addition, simulation results in this work demonstrated that the shell effectively could passivate the surface traps on PbS, resulting in highly improved in the short-circuit current density. Therefore, presented approach in present simulation provides a new method for simulation of high performance core-shell solar cells.