This study proposed a novel and cost-efective approach to enhance and optimize the exo-polygalacturonase from P. indica, a root endophytic fungus. In the current investigation, the impact of ammonium sulfate, sugar beet pulp (SBP), and glucose as variables on induction of exo-polygalacturonase from P. indica was optimized using the central composite design (CCD) of response surface methodology (RSM) under submerged fermentation (SmF). Additionally, determination of the exo-polygalacturonase molecular weight and in situ analysis was performed. The optimal reaction conditions, which resulted in the highest enzyme activity, were observed in the following conditions: ammonium sulfate (4 g/L), SBP (20 g/L), and glucose (60 g/L). Under the optimized condition, the maximum enzyme activity reached 19.4 U/ml (127 U/mg), which increased by 5.84 times compared to non-optimized conditions. The exo-polygalacturonase molecular weight was estimated at 60 KDa. In line with the bioinformatic analysis, the exo-polygalacturonase sequence of P. indica showed similarity with Rhizoctonia solani’s and Thanateporus cucumeris. These results indicated that SBP acts as a cheap and suitable inducer of exo-polygalacturonase production by P. indica in submerged cultivation. The outcome of this study will be useful for industries to decrease environmental pollution with cost-efective approaches.