2026/1/30
Reza Abazari

Reza Abazari

Academic rank: Assistant Professor
ORCID:
Education: PhD.
H-Index:
Faculty: Faculty of Basic Sciences
ScholarId:
E-mail: reza.abazari [at] maragheh.ac.ir
ScopusId:
Phone: 09198289419
ResearchGate:

Research

Title
Postsynthetic Modification of NU-1000 for Designing a Polyoxometalate-Containing Nanocomposite with Enhanced Third-Order Nonlinear Optical Performance
Type
JournalPaper
Keywords
Postsynthetic Modification, metal−organic frameworks, nonlinear optical, Polyoxometalates
Year
2022
Journal INORGANIC CHEMISTRY
DOI
Researchers Yangdan Pan ، ُSoheila Sanati ، Marzieh Nadafan ، Reza Abazari ، Junkuo Gao ، Alexander M. Kirillov

Abstract

For the advancement of laser technologies and optical engineering, various types of new inorganic and organic materials are emerging. Metal–organic frameworks (MOFs) reveal a promising use in nonlinear optics, given the presence of organic linkers, metal cluster nodes, and possible delocalization of π-electron systems. These properties can be further enhanced by the inclusion of solely inorganic materials such as polyoxometalates as prospective low-cost electron-acceptor species. In this study, a novel hybrid nanocomposite, namely, SiW12@NU-1000 composed of SiW12 (H4SiW12O40) and Zr-based MOF (NU-1000), was assembled, completely characterized, and thoroughly investigated in terms of its nonlinear optical (NLO) performance. The third-order NLO behavior of the developed system was assessed by Z-scan measurements using a 532 nm laser. The effect of two-photon absorption and self-focusing was significant in both NU-1000 and SiW12@NU-1000. Experimental studies suggested a much superior NLO performance of SiW12@NU-1000 if compared to that of NU-1000, which can be assigned to the charge-energy transfer between SiW12 and NU-1000. Negligible light scattering, good stability, and facile postsynthetic fabrication method can promote the applicability of the SiW12@NU-1000 nanocomposite for various optoelectronic purposes. This research may thus open new horizons to improve and enhance the NLO performance of MOF-based materials through π-electron delocalization and compositing metal–organic networks with inorganic molecules as electron acceptors, paving the way for the generation of novel types of hybrid materials for prospective NLO applications.