2025/12/5
Reza Abazari

Reza Abazari

Academic rank: Assistant Professor
ORCID:
Education: PhD.
H-Index:
Faculty: Faculty of Basic Sciences
ScholarId:
E-mail: reza.abazari [at] maragheh.ac.ir
ScopusId:
Phone: 09198289419
ResearchGate:

Research

Title
Compositional engineering of HKUST-1/sulfidized NiMn-LDH on functionalized MWCNTs as remarkable bifunctional electrocatalysts for water splitting
Type
JournalPaper
Keywords
Electrocatalysts, LDH, MOF, MWCNT,
Year
2023
Journal Carbon Energy
DOI
Researchers Mengshan Chen ، Reza Abazari ، ُSoheila Sanati ، Jing Chen ، Mingyuzhi Sun ، Cunhong Bai ، Alexander Kirillov ، Yingtang Zhou ، Guangzhi Hu

Abstract

Water-splitting reactions such as the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) typically require expensive noble metal-based electrocatalysts. This has motivated researchers to develop novel, cost-effective electrocatalytic systems. In this study, a new multicomponent nanocomposite was assembled by combining functionalized multiwalled carbon nanotubes, a Cu-based metal–organic framework (MOF) (HKUST-1 or HK), and a sulfidized NiMn-layered double hydroxide (NiMn-S). The resulting nanocomposite, abbreviated as MW/HK/NiMn-S, features a unique architecture, high porosity, numerous electroactive Cu/Ni/Mn sites, fast charge transfer, excellent structural stability, and conductivity. At a current density of 10 mA cm−2, this dual-function electrocatalyst shows remarkable performance, with ultralow overpotential values of 163 mV (OER) or 73 mV (HER), as well as low Tafel slopes (57 and 75 mV dec−1, respectively). Additionally, its high turnover frequency values (4.43 s−1 for OER; 3.96 s−1 for HER) are significantly superior to those of standard noble metal-based Pt/C and IrO2 systems. The synergistic effect of the nanocomposite's different components is responsible for its enhanced electrocatalytic performance. A density functional theory study revealed that the multi-interface and multicomponent heterostructure contribute to increased electrical conductivity and decreased energy barrier, resulting in superior electrocatalytic HER/OER activity. This study presents a novel vision for designing advanced electrocatalysts with superior performance in water splitting. Various composites have been utilized in water-splitting applications. This study investigates the use of the MW/HK/NiMn-S electrocatalyst for water splitting for the first time to indicate the synergistic effect between carbon-based materials along with layered double hydroxide compounds and porous compounds of MOF. The unique features of each component in this composite can be an i