Solid Oxide Fuel Cells (SOFCs) have been emerged as a viable technology to convert chemical energy of fuels to electrical energy efficiently and environmentally friendly. However, some issues hinder the successful implementation of SOFC in industrial scales, such as elevated operating temperature, electrochemical stability, high costs associated with materials and interconnectors. To facilitate SOFCs commercialization, Low Temperature-SOFC (LT-SOFC) technology has been introduced. Various materials for core components of the LT-SOFC have been suggested and their performances are investigated. However, operating LTSOFC faces challenges such as low ionic conductivity of electrolytes and slow rate of the oxygen reduction reaction. These obstacles can be overcome by selecting appropriate alternative materials that can conduct tasks preferably. Since assessing choices demands multiple measures, conducting a multi-criteria decision-making approach is inevitable. In this study, the Analytical Hierarchy Process is used to evaluate criteria and different options as alternatives for the main constituents of an LT-SOFC.