Research Info

Home /Ligand-Driven Coordination ...
Title Ligand-Driven Coordination Sphere-Induced Engineering of Hybride Materials Constructed from PbCl2 and Bis-Pyridyl Organic Linkers for Single-Component Light-Emitting Phosphors
Type JournalPaper
Keywords PbII coordination polymers, ,structural and topological analyses ,Tetrel bonding ,supramolecular aggregation
Abstract We report design and structural characterization of six new coordination polymers fabricated from PbCl2 and a series of closely related bis-pyridyl ligands LI and HLII–HLVI, namely, [Pb2(LI)Cl4]n, [Pb(HLII)Cl2]n·nMeOH, [Pb(HLIII)Cl2]n·0.5 nMeOH, [Pb2(LIV)Cl3]n, [Pb(HLV)Cl2]n, and [Pb3(LVI)2Cl4]n·nMeOH. The topology of the obtained networks is dictated by the geometry of the organic ligand. The structure of [Pb2(LI)Cl4]n is constructed from the [PbCl2]n two-dimensional (2D) sheets, linked through organic linkers into a three-dimensional framework, which exhibits a unique binodal 4,7-connected three-periodic topology named by us as sda1. Topological analysis of the 2D metal–organic sheet in [Pb(HLII)Cl2]n·nMeOH discloses a binodal 3,4-connected layer topology, regardless of the presence of tetrel bonds. A one-dimensional (1D) coordination polymer [Pb(HLIII)Cl2]n·0.5 nMeOH is considered as a uninodal 2-connected chain. The overall structure of [Pb2(LIV)Cl3]n is constructed from dimeric tetranuclear [Pb4(μ3-LIV-κ6N:N′:N″:μ3-O)2(μ4-Cl)(μ2-Cl)2]3+ cationic blocks linked in a zigzag manner through bridging μ2-Cl– ligands, yielding a 1D polymeric chain. Topological analysis of this chain reveals a unique pentanodal 3,4,4,5,6-connected chain topology named by us as sda2. The structure of [Pb(HLV)Cl2]n exhibits a 1D zigzaglike polymeric chain. Two chains are further linked into a 1D gridlike ribbon through the dimeric [Pb2(μ2-Cl)2Cl2] blocks as bridging nodes. With the bulkiest ligand HLVI, a 2D layered coordination polymer [Pb3(LVI)2Cl4]n·nMeOH is formed, which network, considering all tetrel bonds, reveals a unique heptanodal 3,3,3,3,4,5,5-connected layer topology named by us as sda3. Compounds [Pb2(LI)Cl4]n, [Pb2(LIV)Cl3]n, and [Pb(HLV)Cl2]n were found to be emissive in the solid state at ambient temperature. While blue emission of [Pb2(LI)Cl4]n is due to the ligand-centered transitions, bluish-green and white luminescence of [Pb2(LIV)Cl3]n and [Pb(HLV)Cl2]n, respectively,
Researchers Damir A Safin (Not In First Six Researchers), Mercedes Kukułka (Not In First Six Researchers), Filip Sagan (Not In First Six Researchers), Mariusz P. Mitoraj, (Not In First Six Researchers), Alessia Bacchi (Not In First Six Researchers), Mojtaba Amini (Fifth Researcher), Rosa Carballo (Fourth Researcher), Sabina Rodríguez-Hermida (Third Researcher), Atash V. Gurbanov, (Second Researcher), Ghodrat Mahmoudi (First Researcher)