Research Info

Home /Template-free Scalable ...
Title Template-free Scalable Synthesis of Flower-like Co3-xMnxO4 Spinel Catalysts for Toluene Oxidation
Type JournalPaper
Keywords 3D flower-like catalyst · Co3-xMnxO4 spinel · oxidation of toluene · scalable synthesis · template-free strategy
Abstract The rational design of low‐cost transition metal catalysts that exhibit high activity and selectivity may be the most significantly investigated in heterogeneous catalysis. In this study, Co3‐xMnxO4 (x=0.75, 1.0, and 1.5) mixed metal oxides were successfully synthesized by a controlled template‐free autoclave strategy and studied for toluene oxidation. It is found that the Co‐rich sample showed markedly enhanced activity and the 3D dandelion‐like Co2.25Mn0.75O4 catalyst exhibited in the highest toluene oxidation rate (8.9 μmol/(gcats)) and a 100 % toluene conversion at 239 °C. In situ DRIFTS study indicates that toluene was sequentially oxidized to benzyl radical, benzaldehyde, benzene, oxalic acid, and finally to CO2 and H2O. The interaction between Co and Mn, in conjunction with the high concentration of surface oxygen species and rich surface oxygen vacancies, reasonably explains the elevated catalytic activity and thermal stability for toluene oxidation over 3D flower‐like Co3‐xMnxO4 spinel catalysts.
Researchers Junhua Li (Not In First Six Researchers), Sadegh Rostamnia (Not In First Six Researchers), Hongxing Dai (Not In First Six Researchers), Stuart Bartlett (Not In First Six Researchers), Yue Peng Yue Peng (Fifth Researcher), Yijing Liang (Fourth Researcher), Yuxi Liu (Third Researcher), Yuan Wang (First Researcher), Hamidreza Arandiyan (Second Researcher)