Title
|
Stability of the Einstein static Universe in Einstein–Cartan–Brans–Dicke gravity
|
Type
|
JournalPaper
|
Keywords
|
Modified Gravity, Einstein Static Universe, Cosmology, Dynamical System
|
Abstract
|
In the present work we consider the existence and stability of Einstein static ES Universe in Brans–Dicke (BD) theory with non-vanishing spacetime torsion. In this theory, torsion field can be generated by the BD scalar field as well as the intrinsic angular momentum (spin) of matter. Assuming the matter content of the Universe to be a Weyssenhoff fluid, which is a generalization of perfect fluid in general relativity (GR) in order to include the spin effects, we find that there exists a stable ES state for a suitable choice of the model parameters. We analyze the stability of the solution by considering linear homogeneous perturbations and discuss the conditions under which the solution can be stable against these type of perturbations. Moreover, using dynamical system techniques and numerical analysis, the stability regions of the ES Universe are parametrized by the BD coupling parameter and first and second derivatives of the BD scalar field potential, and it is explicitly shown that a large class of stable solutions exists within the respective parameter space. This allows for non-singular emergent cosmological scenarios where the Universe oscillates indefinitely about an initial ES solution and is thus past eternal.
|
Researchers
|
Amir Hadi Ziaie (Second Researcher), Hamid Shabani (First Researcher)
|