عنوان
|
On Non-standard Hilbert Functions
|
نوع پژوهش
|
مقاله چاپشده در مجلات علمی
|
کلیدواژهها
|
polynomial ring, non-standard Hilbert function, Hermite normal form
|
چکیده
|
Let S = k[x1; : : : ; xn] be a non-standard polynomial ring over a eld k and let M be a nitely generated graded S-module. In this paper, we investigate the behaviour of Hilbert function of M and its relations with lattice point counting. More precisely, by using combinatorial tools, we prove that there exists a polytope such that the image of Hilbert function in some degree is equal to the number of lattice points of this polytope.
|
پژوهشگران
|
امیر باقری (نفر اول)، رحیم رحمتی اصغر (نفر دوم)
|