مشخصات پژوهش

صفحه نخست /Extracting Most Relevant ...
عنوان Extracting Most Relevant Moments by Segment Based Hybrid Feature Selection Scheme for Classifying Radio Galaxy Images
نوع پژوهش مقاله ارائه شده کنفرانسی
کلیدواژه‌ها Radio Galaxy, Classification, Feature subset selection
چکیده One of the significant concerns in radio galaxy image classification is how to deal with highdimensional feature space. Hence, in this paper, we design the segment-based hybrid feature selection scheme (SHFSS) via coupling information theory (filter phase) and machine learning algorithms (wrapper phase). Experimental results show that the selected features bring a higher accuracy than the original dimensions of the dataset for labeling samples.
پژوهشگران سید علیرضا بشیری موسوی (نفر اول)، محسن جواهریان (نفر دوم)، محمد صادقی (نفر سوم)، حلیمه السادات میر آقایی جعفری (نفر چهارم)