عنوان
|
Extracting Most Relevant Moments by Segment Based Hybrid Feature Selection Scheme for Classifying Radio Galaxy Images
|
نوع پژوهش
|
مقاله ارائه شده کنفرانسی
|
کلیدواژهها
|
Radio Galaxy, Classification, Feature subset selection
|
چکیده
|
One of the significant concerns in radio galaxy image classification is how to deal with highdimensional feature space. Hence, in this paper, we design the segment-based hybrid feature selection scheme (SHFSS) via coupling information theory (filter phase) and machine learning algorithms (wrapper phase). Experimental results show that the selected features bring a higher accuracy than the original dimensions of the dataset for labeling samples.
|
پژوهشگران
|
سید علیرضا بشیری موسوی (نفر اول)، محسن جواهریان (نفر دوم)، محمد صادقی (نفر سوم)، حلیمه السادات میر آقایی جعفری (نفر چهارم)
|