عنوان
|
On the Approximate Solution of the Cauchy Problem in a Multidimensional Unbounded Domain
|
نوع پژوهش
|
مقاله چاپشده در مجلات علمی
|
کلیدواژهها
|
integral formula; regularization of the Cauchy problem; approximate solution; Carleman matrix; family of vector functions; Bessel and Hankel functions
|
چکیده
|
In this paper, the Carleman matrix is constructed, and based on it we found explicitly a regularized solution of the Cauchy problem for the matrix factorization of the Helmholtz equation in a multidimensional unbounded domain in Rm,(m=2k,k≥2). The corresponding theorems on the stability of the solution of problems are proved.
|
پژوهشگران
|
علی شکری (نفر دوم)، داورون اسلانکولویچ جورایف (نفر اول)، دانیلا ماریان (نفر سوم)
|