عنوان
|
Fr\'{e}chet differentiability and the gradient of the cost functional of an inverse source problem
|
نوع پژوهش
|
مقاله ارائه شده کنفرانسی
|
کلیدواژهها
|
Inverse source problem, time fractional diffusion equation; adjoint problem; Fr\'{e}chet derivative.
|
چکیده
|
The problem of determining the source term $ f=f(x) $ in a time fractional diffusion equation from the measured data at the final time is formulated. To this end, a methodology involving minimization of the cost functional is applied and proved that the Fr\'{e}chet derivative of the cost functional can be formulated via the solution of an adjoint problem. The obtained results permit one to prove existence and uniqueness of a quasi solution of the considered inverse problems, as well as to construct a monotone iteration scheme based on a gradient-type method.
|
پژوهشگران
|
محمد شهریاری (نفر سوم)، امیر حسین صالحی شایگان (نفر دوم)، علی صفایی (نفر اول)
|