چکیده
|
Soil salinity is one of the increasing problems in agricultural fields in many parts of the world, adversely affecting the performance and health of the plants. As a pleiotropic signal and antioxidant molecule in both animals and plants, melatonin has been reported to possess significant roles in combating with stress factors, in general and salt stress, in particular. In this study, the interactive effects of melatonin (0, 75, and 150 μM) and salt stress (0, 50 and 100 mM NaCl) were investigated by assaying the some agronomic, physlogical and biochemical attributes and essential oil compounds of bitter melon (Momordica charantia). The results showed that exogenous melatonin could promote net photosynthetic rate (Pn) and PSII efficiency (Fv/Fm), increase K+ content and activity of antioxidant enzymes and decrease reactive oxygen species, malondialdehyde and Na+ content in stress-submitted seedlings, in comparison to the non-stressed seedlings (p < 0.05). Melatonin increased content of essential oils. Concerning the major compounds of fruits of bitter melon, charantin, momordicin and cucurbitacin were increased with the melatonin treatments, whereas they were critically decreased with the salt stress. In addition, melatonin increased the antioxidant capacity in fruits under non-saline and salinity conditions. Amid the concentrations of melatonin, plants treated with 150 μM of melatonin under either non-saline or saline conditions showed better performance and productivity. Therefore, application of 150 μM melatonin resulted in a significant improvement of salinity tolerance and essential oil compounds in bitter melon plant, suggesting this as an efficient ‘green’ strategy for sustainable crop production under salt stress conditions.
|