چکیده
|
The hydrodynamics of a conical spouted bed was simulated utilizing the Eulerian–Eulerian Two-Fluid Model (TFM) incorporating a kinetic theory of granular flows. The simulations were confirmed with experimental data. To accurately examine the pyrolysis process, the hydrodynamics of the solid bed as well as the heat transfer inside it were analysed separately by considering a precise synthetic model. The effects of gas velocity, particle size, bed length, and temperature were thoroughly investigated. The results indicated that the amount of relative standard deviation increases with an increase in the inlet velocity into the bed. This amount of deviation at the inlet velocity (0.6 m/s for tar and gas flow to its maximum value of 9.1 and 9.4) is not desirable in product production and should be modified so that the amount of gas flow increases and the tar produced reaches the minimum possible amount. Also, the graphs of the relative standard deviation in terms of temperature indicate that the increase in temperature from 730 to 950 K is associated with a relatively smaller fluctuation of the relative standard deviation so that at the temperature of 730 K, it is 7.2 % for tar and 6.4 % for gas flow, while at temperature of 950 K, it is 6.5 % for wire and 6.8 % for gas flow. Finally, the results determined that small-diameter particles have a more significant fountain height and also higher velocity in the spout section.
|