مشخصات پژوهش

صفحه نخست /$S$-orbit of translations on ...
عنوان $S$-orbit of translations on locally compact‎ ‎groups via Orlicz spaces
نوع پژوهش مقاله ارائه شده کنفرانسی
کلیدواژه‌ها Orlicz space‎, ‎locally compact group‎, ‎weight‎, ‎Young‎ ‎function‎, ‎universal‎, ‎orbit‎, ‎translation‎, ‎convolution‎, ‎hypercyclic.
چکیده Let $\Phi$ be a Young function and $\omega$ be a weight on a‎ ‎locally compact group $G$‎. ‎For any $S\subseteq G$‎, ‎a family of left‎ ‎translations $\{L_s\}_{s\in S}$ on the weighted Orlicz space‎ ‎$L^{\Phi}(G‎, ‎\omega)$‎, ‎is defined by $L_s f(t):= f(s^{-1}t)$ for‎ ‎all $t\in G$‎. ‎It is said to have an \emph{$S$-dense orbit} if there‎ ‎exists a function $f\in L^{\Phi}(G‎, ‎\omega)$‎, ‎such that‎ ‎$Orb_S(f)=\{L_s(f)‎: ‎s\in S\}$ is dense in $L^{\Phi}(G‎, ‎\omega)$‎. ‎We‎ ‎show that no compact groups $G$ have an $S$-dense orbit in‎ ‎$L^{\Phi}(G‎, ‎\omega)$‎. ‎Also $S$-dense orbits may occur only on the‎ ‎infinite dimensional weighted Orlicz spaces $L^{\Phi}(G‎, ‎\omega)$‎ ‎with the second countable locally compact groups $G$‎. ‎Moreover‎, ‎we give a necessary and sufficient‎ ‎condition for $\{L_s\}_{s\in S}$ to have an $S$-dense orbit in‎ ‎$L^{\Phi}(G‎, ‎\omega)$‎.
پژوهشگران محمدرضا عظیمی (نفر اول)، ابراهیم اکبربگلو (نفر دوم)