چکیده
|
Global clean energy demands can be effectively addressed using the promising approach of hydrogen energy generation combined with less energy consumption. Hydrogen can be generated, and urea-rich wastewater pollution can be mitigated in a low-energy manner using the urea oxidation reaction (UOR). This paper seeks to assemble a unique electrocatalyst of a pristine 2D MOF, [Co(HBTC)(DMF)]n (Co-MUM-3), from 1,3,5-benzenetricarboxylate (BTC) to oxidize urea in simulated seawater. Ni foam (NF)-based working electrodes were fabricated by incorporating a series of heterometallic CuCo-MUM-3 frameworks (Cu0.1Co0.9-MUM-3, Cu0.2Co0.8-MUM-3, Cu0.3Co0.7-MUM-3, and Cu0.4Co0.6-MUM-3), after which their application in the urea oxidation reaction was examined. A very low required overpotential [1.26 V vs reversible hydrogen electrode (RHE) in 1 M KOH + 0.5 M NaCl (simulated seawater) + 0.33 M urea] and a Tafel slope of 112 mV dec–1 could be observed for the Cu0.3Co0.7-MUM-3 electrocatalyst, ensuring the achievement of urea electro-oxidation and hydrogen evolution reactions at a corresponding 10 mA cm–2 electrocatalytic current density. A relatively lower overpotential will be evident compared to other reported pristine MOFs, outperforming the commercial catalyst RuO2 (1.41 V at 10 mA cm–2, 131 mV dec–1) and ensuring considerable stability at significantly high current densities for a minimum of 72 h.
|