مشخصات پژوهش

صفحه نخست /Dynamics of weighted ...
عنوان Dynamics of weighted composition operators on Stein manifolds
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها holomorphic functions, weighted composition, hypercyclic, convexity, Stein manifold
چکیده In the present paper, we investigate the hypercyclicity of weighted composition operators acting on the space of holomorphic functions on a connected finite-dimensional Stein manifold. Let \psi be a holomorphic self-map on a connected Stein n-manifold \Omega and \omega\in {H}(\Omega) a holomorphic function. We study the hypercyclicity of weighted composition operator \Pi_{\psi, \omega}: {H}(\Omega)\to {H}(\Omega) defined by \Pi_{\psi, \omega}(f):= \omega\ ...(f\circ \psi) for every f\in {H}(\Omega). We prove that \Pi_{\psi, \omega} is hypercyclic if and only if \omega(p) \neq 0 at each p \in \Omega , \psi is univalent without fixed points in \Omega, \psi(\Omega) is a Runge domain and for every compact holomorphically convex set K\subset \Omega there is an integer n such that K \cap \psi^{[n]}(K) = \emptyset and their union is holomorphically convex.
پژوهشگران فیروز پاشایی (نفر اول)، محمدرضا عظیمی (نفر دوم)، محمد شهیدی (نفر سوم)