مشخصات پژوهش

صفحه نخست /ON HYPERCYCLICITY OF WEIGHTED ...
عنوان ON HYPERCYCLICITY OF WEIGHTED COMPOSITION OPERATORS ON STEIN MANIFOLDS
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها Holomorphic, Composition operator, Hypercyclic, Convex
چکیده In this manuscript, we study the hypercyclicity of weighted composition operators defined on the set of holomorphic complex functions on a connected Stein n-manifold M. We show that a weighted composition operator C_{ψ,ω} (associated to a holomorphic self-map ψ and a holomorphic function ω on M) is hypercyclic with respect to an increasing sequence (nl)_l of natural numbers if and only if at every p ∈ M we have ω(p) ̸= 0 and the self-map ψ is injective without any fixed points in M, ψ(M) is a Runge domain and for every M-convex compact subset C ⊂ M there is a positive integer number k such that the sets C and ψ^[nk](C) are separable in M. Keywords: Holomorphic, composition operators, hypercyclic, convex.
پژوهشگران فیروز پاشایی (نفر اول)، محمدرضا عظیمی (نفر دوم)، محمد شهیدی (نفر سوم)