|
عنوان
|
ON 1-MAXIMAL WEAKLY BIHARMONIC SPACELIKE HYPERSURFACES OF SOME LORENTZ SPACE FORMS
|
|
نوع پژوهش
|
مقاله ارائه شده کنفرانسی
|
|
کلیدواژهها
|
C-biharmonic, spacelike, scalar curvature, isoparametric
|
|
چکیده
|
In this talk, we study the $\C$-biharmonicity of a spacelike hypersurface in $\M_1^5(c)$ defined by $\x:M^4\rightarrow\M_1^5(c)$. This condition means that $\x$ satisfies the condition $\C^2\x=0$ which is an extended version of biharmonicity condition $\Delta^2\x=0$, where $\C$ is the Cheng-Yau operator and $\Delta$ is the well-known Laplace operator. We show that if a mentioned hypersurface has at most two distinct principal and constant mean curvature then it is 1-maximal.
|
|
پژوهشگران
|
فیروز پاشایی (نفر اول)، سارا حسین پور (نفر دوم)، قربانعلی حقیقت دوست (نفر سوم)، لیلا شهباز (نفر چهارم)
|