May 20, 2024
M. Reza Morshedloo

M. Reza Morshedloo

Academic rank: Associate professor
Address: University of Maragheh ,Maragheh , East Azarbaijan , Iran
Education: PhD.
Phone: +98 41 37278001
Faculty: Faculty of Agriculture

Research

Title
Effectiveness of eight essential oils against two key stored-product beetles, Prostephanus truncatus (Horn) and Trogoderma granarium Everts
Type Article
Keywords
Botanical insecticides Carlina acaulis Dysphania ambrosioides Maize Mentha longifolia Wheat
Year
2020
Journal FOOD AND CHEMICAL TOXICOLOGY
DOI https://doi.org/10.1016/j.fct.2020.111255
Researchers Nickolas G. Kavallieratos، Maria C. Boukouvala، Nikoletta Ntallic، Anna Skourti، Effrosyni S. Karagiannia، Erifili P. Nika، Demetrius C. Kontodima، Loredana Cappellacci، Riccardo Petrelli، Kevin Cianfaglione، M. Reza Morshedloo، Léon Azefack Tapondjoui، filippo maggi، Giovanni Benelli

Abstract

The use of chemical pesticides to preserve food commodities is a global issue of concern due to their negative effect on the environment and public health. In recent years, the European Union is trying to reduce their use, favoring alternative or complementary approaches based on natural products. In this scenario, plant-borne essential oils (EOs) represent valid options for Integrated Pest Management (IPM) programs. In the present study, the insecticidal effect of eight EOs obtained from plants from different parts of the world, namely Mentha longifolia, Dysphania ambrosioides, Carlina acaulis, Trachyspermum ammi, Pimpinella anisum, Origanum syriacum, Cannabis sativa and Hazomalania voyronii, were evaluated against two stored-product insect species of economic importance, Prostephanus truncatus and Trogoderma granarium. Simulating a small-scale stored-product conservation environment, an AG-4 airbrush was used to spray maize and wheat with 500 and 1000 ppm of EOs, then T. granarium and P. truncatus were exposed to the stored products and mortality was evaluated over selected time intervals (4, 8, and 16 h, and 1, 2, 3, 4, 5, 6, and 7 days). The EO of C. acaulis exhibited high efficacy against P. truncatus adults at both tested concentrations by killing>97% of the individuals exposed to treated maize within 3 days at 500 ppm. The EO of D. ambrosioides eliminated all T. granarium adults exposed to 1000 ppm-treated wheat 2 days post-exposure. At this exposure interval, 91.1% of the exposed T. granarium adults died on wheat treated with 1000 ppm of C. acaulis EO. The EO of M. longifolia at both tested concentrations was the most effective against T. granarium larvae, leading to 97.8% mortality at 500 ppm after 3 days of exposure, and 100% mortality at 1000 pm 2 days post-exposure. At 1000 ppm, the EOs of D. ambrosioides and P. anisum led to 95.6 and 90% mortality, respectively, to larvae exposed to treated wheat for 7 days. Overall, our research shed light on the poten