May 20, 2024
M. Reza Morshedloo

M. Reza Morshedloo

Academic rank: Associate professor
Address: University of Maragheh ,Maragheh , East Azarbaijan , Iran
Education: PhD.
Phone: +98 41 37278001
Faculty: Faculty of Agriculture

Research

Title
Comparative Analysis of the Antimicrobial Activity of Essential Oils and Their Formulated Microemulsions against Foodborne Pathogens and Spoilage Bacteria
Type Article
Keywords
essential oils; microemulsion; dynamic light scattering; antimicrobial efficacy; pathogens
Year
2022
Journal Antibiotics-Basel
DOI https://doi.org/10.3390/antibiotics11040447
Researchers Raffaella Campana، Mattia Tiboni، filippo maggi، Loredana Cappellacci، Kevin Cianfaglione، M. Reza Morshedloo، Emanuela Frangipani، Luca Casettari

Abstract

The antimicrobial activity of several essential oils (EOs) and their related microemulsions (MEs) was investigated. EOs were obtained from Cannabis sativa L. cv CS (C. sativa), Carum carvi L. (C. carvi), Crithmum maritimum L. (C. maritimum), Cuminum cyminum L. (C. cyminum), x Cupressocyparis leylandii A.B. Jacks & Dallim. (C. leylandii), Cupressus arizonica Greene (C. arizonica), Ferula assafoetida L. (F. assa-foetida)., Ferula gummosa Boiss. (F. gummosa), Juniperus communis L. (J. communis), Juniperus x pfitzeriana (Spath) P.A. Schmidt (J. pfitzeriana), Pimpinella anisum L (P. anisum). Preliminary screening revealed that Cuminum cyminum, Crithmum maritimum, and Pimpinella anisum (10%v/v) were effective against all tested microorganisms (Escherichia coli ATCC 35218, Listeria monocytogenes ATCC 7644, Staphylococcus aureus ATCC 29213, Pseudomonas fluorescens DSM 4358, and Candida albicans ATCC 10231), with growth inhibition diameter from 10 to 25 mm. These EOs were used to formulate the MEs with an average size <50 nm and a good stability over 30 days. EOs’ antimicrobial activity was further enhanced in the MEs, with a generalized lowering of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. C. cyminum- ME reached, in most cases, MIC two times lower (0.312%) than the corresponding EO (0.625%) and even eight times lower against S. aureus (0.156 vs. 1.25%). A more remarkable microbicide effect was noted for C. cyminum-ME, with MBC values eight times lower (from 0.312 to 0.625%) than the corresponding EO (from 2.5 to 5%). Overall, MEs resulted in an efficient system for EOs encapsulation, enhancing solubility and lowering concentration to exert antimicrobial efficacy.